Automatic Classification of Specific Melanocytic Lesions Using Artificial Intelligence
نویسندگان
چکیده
BACKGROUND Given its propensity to metastasize, and lack of effective therapies for most patients with advanced disease, early detection of melanoma is a clinical imperative. Different computer-aided diagnosis (CAD) systems have been proposed to increase the specificity and sensitivity of melanoma detection. Although such computer programs are developed for different diagnostic algorithms, to the best of our knowledge, a system to classify different melanocytic lesions has not been proposed yet. METHOD In this research we present a new approach to the classification of melanocytic lesions. This work is focused not only on categorization of skin lesions as benign or malignant but also on specifying the exact type of a skin lesion including melanoma, Clark nevus, Spitz/Reed nevus, and blue nevus. The proposed automatic algorithm contains the following steps: image enhancement, lesion segmentation, feature extraction, and selection as well as classification. RESULTS The algorithm has been tested on 300 dermoscopic images and achieved accuracy of 92% indicating that the proposed approach classified most of the melanocytic lesions correctly. CONCLUSIONS A proposed system can not only help to precisely diagnose the type of the skin mole but also decrease the amount of biopsies and reduce the morbidity related to skin lesion excision.
منابع مشابه
Reticular pattern detection in dermoscopy: an approach using Curvelet Transform
Introduction: Dermoscopy is a non-invasive in vivo imaging technique, used in dermatology in feature identification, among pigmented melanocytic neoplasms, from suspicious skin lesions. Often, in the skin exam is possible to ascertain markers, whose identification and proper characterization is difficult, even when it is used a magnifying lens and a source of light. Dermoscopic images are thus ...
متن کاملAutomatic classification of Non-alcoholic fatty liver using texture features from ultrasound images
Background: Accurate and early detection of non-alcoholic fatty liver, which is a major cause of chronic diseases is very important and is vital to prevent the complications associated with this disease. Ultrasound of the liver is the most common and widely performed method of diagnosing fatty liver. However, due to the low quality of ultrasound images, the need for an automatic and intelligent...
متن کاملA comparative study of estrogen receptor beta expression in melanoma and benign melanocytic lesions
Background: Malignant melanoma is the most aggressive form of skin cancer. In contrast to other tumors, the role of estrogen in the initiation and progression of melanoma remains unclear. The aim of this study was to evaluate estrogen receptor beta protein expression in human melanoma tissues and in the benign melanocytic lesions. Method: Twenty-one patients, 11 with cutaneous melanoma and 10 w...
متن کاملExplain the theoretical and practical model of automatic facade design intelligence in the process of implementing the rules and regulations of facade design and drawing
Artificial intelligence has been trying for decades to create systems with human capabilities, including human-like learning; Therefore, the purpose of this study is to discover how to use this field in the process of learning facade design, specifically learning the rules and standards and national regulations related to the design of facades of residential buildings by machine with a machine ...
متن کاملAutomatic Face Recognition via Local Directional Patterns
Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016